KARMAŞIK SAYILAR KONU ANLATIMI LYS MATEMATİK, KARMAŞIK SAYILAR, KARMAŞIK SAYILAR DERS NOTLARI, LYS MATEMATİK KARMAŞIK SAYILAR, LYS MATEMATİK, LYS MATEMATİK TÜM KONULAR İÇİN TIKLA
Karmaşık Sayılar Ders Notu
KARMAŞIK SAYILAR
Bu ders notumuzda bir çok sınavda karşımıza çıkan Matematik Karmaşık Sayılar konusunun geniş konu anlatımını, konun önemli yerlerini bulabilirsiniz.I. KARMAŞIK SAYILAR KÜMESİ
Tanım
| a, b pozitif gerçel sayı vex, y negatif gerçel sayı olmak üzere, |
olmak üzere,
i0 = 1 dir.
i1 = i dir.
i2 = –1 dir.
i3 = i2 × i1 = (–1) × i = –i dir.
i4 = i2 × i2 = (–1) × (–1) = 1 dir.
i5 = i4 × i1 = 1 × i = i dir.
Görüldüğü gibi i nin kuvvetleri ; 1, i, –1, –i değerlerinden birine eşit olmaktadır.
Sonuç
| Sanal sayı biriminin (i nin) kuvveti x olsun. x tam sayısı 4 ile bölündüğünde, kalan 0 ise, ix ifadesinin eşiti 1,kalan 1 ise, ix ifadesinin eşiti i,kalan 2 ise, ix ifadesinin eşiti –1, kalan 3 ise, ix ifadesinin eşiti –i dir. Buna göre, n tam sayı olmak üzere, i4n= 1, i4n+1 = i, i4n+2 = –1, i4n+3 = –i dir. |
| a ve b birer reel (gerçel) sayı ve a ya karmaşık sayının reel (gerçel) kısmı, b ye karmaşık sayının imajiner (sanal) kısmı denir. z = a + bi ise Re(z) = a İm(z) = b şeklinde gösterilir. |
| Her reel (gerçel) sayı imajiner kısmı 0 (sıfır) olan bir karmaşık sayıdır. Buna göre, karmaşık sayılar kümesi reel sayılar kümesini kapsar. Yani, |
Reel kısımları ve imajiner kısımları kendi aralarında eşit olan iki karmaşık sayı birbirine eşittir.
Kural
Reel kısmı a, imajiner kısmı b olan karmaşık sayının; z = a + ib şeklindeki gösterimine karmaşık sayının standart (cebirsel) biçimi,
Z(a, b) biçimindeki gösterimine kartezyen koordinatlarıyla gösterilmiş biçimi denir.
Ox eksenine reel eksen, Oy eksenine de sanal (imajiner) eksen diyerek karmaşık sayıları gösterebileceğimiz karmaşık düzlemi elde ederiz.
Karmaşık sayılarla karmaşık düzlemin noktaları bire bir eşlenebilir.
z = a + bi karmaşık sayısının düzlemdeki görüntüsü (a, b) noktasıdır.
D. KARMAŞIK SAYININ EŞLENİĞİ
a + bi ve a + (–b)i karmaşık sayılarından birine diğerinin eşleniği denir.
z karmaşık sayısının eşleniği
Buna göre,
Kural
| Bir karmaşık sayının eşleniğinin eşleniği kendisidir. Buna göre, |
| Reel kat sayılı, ax2 + bx + c = 0 ikinci dereceden denkleminin köklerinden biri m + ni karmaşık sayısı ise diğeri m – ni sayısıdır. |
Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın başlangıç noktasına (orijine) olan uzaklığına bu sayının mutlak değeri veya modülü denir.
z karmaşık sayısının mutlak değeri |z| ile gösterilir.
| Yandaki dik üçgende Pisagor teoreminden de, |
1. Toplama İşlemi
Karmaşık sayılar toplanırken, reel kısımlar kendi aralarında ve sanal kısımlar kendi aralarında toplanır. Buna göre,
i2 = –1 olmak üzere,
karmaşık sayıları verilmiş olsun. Bu durumda,
2. Çıkarma İşlemi
z + (–w) = z – w
olduğuna göre, z sayısını w sayısının toplama işlemine göre tersi ile toplamak, z sayısından w sayısını çıkarmak demektir. Buna göre,
z ile w nin farkı, reel kısımların birbiri ile sanal kısımların birbiri ile farkına eşittir. Reel kısımların farkı, sonucun reel kısmını; sanal kısımların farkı, sonucun sanal kısmını verir. Buna göre,
i2 = –1 olmak üzere,
karmaşık sayıları verilmiş olsun. Bu durumda
3. Çarpma İşlemi
Karmaşık sayılarda çarpma işlemi, i2 = –1 olduğu göz önüne alınarak, reel sayılardakine benzer şekilde yapılır.
z = a + bi ve w = c + di olsun. Buna göre,
Sonuç
| i2 = –1 ve z = a + bi olmak üzere, |
| i2 = –1 ve n tam sayı olmak üzere, |
z1 × (z2)–1 sayısına z1 in z2 ye bölümü denir ve
Karmaşık sayılarda bölme işlemi, pay ile paydanın, paydanın eşleniği ile genişletilmesiyle yapılır. Yani,
z1 = a + bi ve z2 = c + di ise,
5. Eşlenik ve Mutlak Değerle İlgili Bazı Özellikler
z1 ve z2 birer karmaşık sayı olmak üzere,
G. KARMAŞIK DÜZLEMDE İKİ NOKTA ARASINDAKİ UZAKLIK
z = a + bi ve w = c + di olsun.
|z – w|
ifadesinin değeri z ile w sayısı arasındaki uzaklığa eşittir.
z sayısına karşılık gelen nokta A, w sayısına karşılık gelen nokta B olsun. Buna göre,
Kural
| z, değişen değerler alan bir karmaşık sayı; w sabit bir karmaşık sayı ve r, pozitif reel sayı olmak koşuluyla |z – w| = reşitliğini gerçekleyen z noktalarının kümesi, karmaşık düzlemde, merkezi w ye karşılık gelen nokta ve yarıçapı r olan bir çember belirtir.|z – w| < r eşitsizliğini gerçekleyen z noktalarının kümesi, karmaşık düzlemde, merkezi w ye karşılık gelen nokta ve yarıçapı r olan çemberin iç bölgesini belirtir. |
i2 = –1 olmak üzere, z = a + bi olsun.
z nin karmaşık düzlemdeki görüntüsü M(a, b) noktasıdır. z karmaşık sayısını orijine birleştiren doğrunun reel eksenle (Ox ekseniyle) pozitif yönde yaptığı açıya, z karmaşık sayısının argümenti denir ve
arg(z) ile gösterilir.
Açının esas ölçüsü olan değere de
Yukarıdaki şekilde, OHM dik üçgeninden,
yazılır. Buradan,
Sonuç
| i2 = –1 olmak üzere, z = a + bi olsun. z nin, mutlak değeri (orijine uzaklığı) |z| = r ve esas argümenti q olmak üzere, z = |z| × (cosq + isinq)biçiminde yazılmasına, z karmaşık sayının kutupsal (trigonometrik) gösterimi denir.z = |z| × (cosq + isinq) ifadesi z = r × cisq biçiminde kısaca gösterilebilir. |
| i2 = –1 olmak üzere, z = a + bi olsun. Karmaşık sayının mutlak değeri ile argümentinden oluşan sıralı ikiliye bu sayının kutupsal koordinatları denir. z nin kutupsal koordinatları (|z|, q) veya (r, q) biçiminde gösterilir. |
| Buna göre, karmaşık sayıların çarpımının argümenti, bu sayıların argümentleri toplamına eşittir. Bu durumda, |
| |
| |
| z0 = a + bi karmaşık sayısının karmaşık düzlemdeki görüntüsü M(a, b) noktası olsun. arg(z – z0) = qkoşulunu sağlayan z karmaşık sayılarının görüntüsü MP yarı doğrusudur. |
z = r × cisq karmaşık sayısının orijin etrafında pozitif yönde a kadar döndürülmesiyle elde edilen karmaşık sayı, v = r × cis(q + a) olur. Bu durum,
v = z × (cosa + isina)
biçiminde de ifade edilebilir.
Uyarı
| Bir karmaşık sayıyı negatif yönde q derece kadar döndürmek, o sayıyı pozitif yönde 360° – q kadar döndürmektir. |
zn = u denklemini sağlayan z sayısına u sayısının n inci kuvvetten kökü denir.
Sonuç
| z2 = w eşitliğini sağlayan z sayıları birbirinin toplama işlemine göre tersidir. Yani, z2 = w eşitliğini sağlayan z sayıları z1 ile z2 ise,z1 = –z2 dir. |
| |
|
