TÜREV KONU ANLATIMI LYS MATEMATİK, TÜREV DERS NOTLARI, TÜREV, LYS MATEMATİK, LYS MATEMATİK TÜREV KONU ANLATIMI, LYS MATEMATİK TÜM KONULAR İÇİN TIKLA
Türev Ders Notu
TÜREV
Bu ders notumuzda bir çok sınavda karşımıza çıkan ve çok önemli bir konu olan Türev konusunun geniş konu anlatımını, konun önemli yerlerini bulabilirsiniz.1. Türevin Tanımı 1
a, b birer reel sayı olmak üzere,
fonksiyonu verilmiş olsun.
limiti bir reel sayı ise, bu limit değerine f fonksiyonunun x0 daki türevi denir.
Ve f ‘(x0), Df(x0) ya da
x – x0 = h alınırsa x ® x0 için h ® 0 olur. Bu durumda, tanım olarak,
eşitliği de yazılabilir.
2. Türevin Tanımı 2
fonksiyonu için,
limiti varsa bu limite f fonksiyonunun x = a daki sağdan türevi denir. Ve
biçiminde gösterilir. Benzer şekilde,
limiti varsa bu limite f fonksiyonunun x = a daki soldan türevi denir. Ve
biçiminde gösterilir.
f fonksiyonunun, x = a daki sağdan türevi soldan türevine eşit ise f nin x = a da türevi vardır (ve bulunan bu limit değerleri, o noktadaki türeve eşittir). Aksi takdirde türevi yoktur.
Sonuç
| 1. f ‘(a+) = f’(a–) ise f fonksiyonunun x = a da türevi vardır. 2. f fonksiyonunun x = a da türevi varsa f fonksiyonu x = a da süreklidir.3. f fonksiyonu, x = a da sürekli olduğu hâlde, o noktada türeve sahip olmayabilir.4. f fonksiyonu x = a da sürekli değilse türevli de değildir. |
| Bir fonksiyonun, bir noktada türevinin olması için gerek koşul, o noktada sürekliliktir. Ancak bu, o noktada türevin olması için yeterli değildir. |
TÜREV ALMA KURALLARI
1. xn nin Türevi
2. c Sabit Sayısının Türevi
3. c × f(x) in Türevi
4. Toplamın Türevi
5. Farkın Türevi
6. Çarpımın Türevi
7. Bölümün Türevi
Sonuç
f(a) = 0 ise fonksiyonun bu noktada türevi olabilir ya da olmayabilir. Bunu araştırmak için fonksiyonun sağdan ve soldan türevlerine bakılır. Sağdan ve soldan türevler eşit ise fonksiyon bu noktada türevlidir. Aksi hâlde türevli değildir.
Sonuç
| Mutlak değer fonksiyonu tek katlı köklerde köşe (uç) oluşturur. Köşe (uç) noktalarda türev yoktur. Çift katlı köklerde köşe (uç) oluşmaz. Bunun için, çift katlı köklerde türev vardır ve sıfırdır. |
10. Tam Değer Fonksiyonunun Türevi
11. Bileşke Fonksiyonun Türevi
Uyarı
| f ‘(2) gösterimi [f(2)]‘ gösterimi ile karıştırılmamalıdır. f ‘(2) ¹ [f(2)]‘ dir.Çünkü f ‘(2) gösterimi, fonksiyonun türevinin, yani f ‘(x) in x = 2 için değeridir.[f(2)]‘ gösterimi, fonksiyonun x = 2 için değerinin (Yani, bir reel sayının) türevidir. [f(2)]‘ = 0 dır. |
Kural
Kural
Kural
y = g(t)
x = h(t)
denklemleri ile de belirtilebilir. Burada t ye parametre denir.
Bazen y = g(t) ve x = h(t) denklemlerinden t yok edilerek y = f(x) şeklinde bir denklem elde edilebilir. Ancak bu her zaman mümkün olmayabilir.
Bu durumda,
y = g(t), x = h(t) parametrik denklemleriyle verilen
y = f(x) fonksiyonunun türevi aşağıda verilen kural yardımıyla bulunur.
16. Kapalı Fonksiyonların Türevi
F(x, y) = 0 şeklindeki fonksiyonlara kapalı fonksiyon denir.
x in değişken, x in dışında kalanların sabit gibi düşünülmesiyle alınan türevi Fx ile ve y nin değişken, y nin dışında kalanların sabit gibi düşünülmesiyle alınan türevi Fy ile gösterelim.
Buna göre, kapalı fonksiyonun türevini şu kural yardımıyla buluruz:
17. Trigonometrik Fonksiyonların Türevi
18. Ardışık Türevler
y = f(x) in türevi
f’(x) in türevi olan
y = f(x) in ikinci mertebeden türevi denir.
Benzer şekilde,
mertebeden türevi denir.
Kural
f: A ® B, birebir ve örten bir fonksiyon ise f(x) in tersi olan f–1(x) fonksiyonu bulunur. Sonra türev alınır. Bunun zor olduğu durumlarda ters fonksiyonun türevi şöyle alınır.
Kural
| Ters trigonometrik fonksiyonların türevinin bulunmasında şu formüller kullanılabilir. |
Türevin Anlamı Ders Notu
TÜREVİN ANLAMI
Bu ders notumuzda bir çok sınavda karşımıza çıkan ve çok önemli bir konu olan Türevin Anlamı konusunun geniş konu anlatımını, konun önemli yerlerini bulabilirsiniz.A. TÜREVİN FİZİKSEL ANLAMI
Bir hareketlinin t saatte kaç km yol aldığı,
fonksiyonu ile verilsin.
Hareketlinin t anındaki hızı:
ve t anındaki ivmesi
olur. Diğer bir ifadeyle, yol fonksiyonunun birinci türevi anlık hızı; ikinci türevi ivmeyi verir.
B. TÜREVİN GEOMETRİK ANLAMI
y = f(x) fonksiyonunun A(x0, y0) noktasındaki teğetinin Ox ekseniyle yaptığı pozitif yönlü açının ölçüsü a olsun. Teğetin eğimi, tana ya eşit olduğu için:
m = tana dır.
Kural
| y = f(x) fonksiyonunun x = x0 daki türevi A(x0, y0) noktasındaki teğetinin eğimine eşittir.f’(x0) = m = tana dır. |
| Eğimi m olan ve A(x0, y0) noktasından geçen doğrunun denklemi, olduğu için, y = f(x) eğrisinin A(x0, y0) noktasındaki teğetinin denklemi, |
| Birbirine dik olan doğruların eğimleri çarpımı – 1 olduğu için, y = f(x) eğrisinin A(x0, y0) noktasındaki normalinin eğimi: |
1. Artan Fonksiyon
Her x1, x2 Î B için,
x1 < x2 iken f(x1) < f(x2) ise f(x) fonksiyonu B üzerinde artandır.
2. Azalan Fonksiyon
Her x1, x2 Î B için,
x1 < x2 iken f(x1) > f(x2) ise f(x) fonksiyonu B üzerinde azalandır.
Uyarı
| Artan fonksiyonun türevi daima pozitiftir. Bu ifadenin tersi de doğrudur. Azalan fonksiyonun türevi daima negatiftir. Bu ifadenin tersi de doğrudur. |
Her x1, x2 Î B için, f(x1) = f(x2) ise f(x) fonksiyonu B üzerinde sabittir.
D. EKSTREMUM DEĞERLER ve BUNLARIN TÜREVLE İLİŞKİSİ
1. Ekstremum Noktalar
| a, b Î A olsun. Her x Î (a, b) için, |
olacak şekilde bir p Î A varsa, f(p) ye mutlak maksimum değer denir.
| |
olacak şekilde bir r Î A varsa, f(r) ye mutlak minimum değer denir.
Tanım
| Fonksiyon maksimum ve minimum değerlerinin hepsine birden, fonksiyonun yerel ekstremum değerleri denir. |
| Fonksiyon ekstremum noktalarda türevli ise, türevi sıfırdır. Tersi her zaman doğru değildir. |
| h > 0 olmak üzere, |
| h > 0 olmak üzere, |
Uyarı
| Yukarıda verilen tanım türevlenebilir fonksiyonlar için doğrudur. Ancak y = f(x) fonksiyonu x = x0 da türevsiz olduğu hâlde x = x0 da yerel maksimuma ya da yerel minimuma sahip olabilir. |
| Birinci türevin sıfır olduğu noktada, türevin işareti değişiyorsa yerel maksimuma ya da yerel minimuma sahiptir. Fonksiyonun türevinin işaret tablosunda soldan sağa doğru, işaretin – den + ya geçtiği noktada yerel minimum; işaretin + dan – ye geçtiği noktada yerel maksimum vardır. |
Kural
| |
| |
1. Konveks Eğriler
f, [a, b] aralığından
[a, b] aralığında f ”(x) > 0 ise, f nin grafiği olan eğri konveks (dış bükey) dir. Diğer bir ifadeyle, bükülme yönü yukarı doğrudur. Eğri, teğetlerinin yukarısındadır.
Aşağıdaki grafiklerde verilen eğrilerin üçü de konvekstir.
2. Konkav Eğriler
f, [a, b] aralığından
a, b] aralığında f ”(x) < 0 ise, f nin grafiği olan eğri konkav (iç bükey) dir. Diğer bir ifadeyle, bükülme yönü aşağı doğrudur. Eğri, teğetlerinin altındadır.
Aşağıdaki grafiklerde verilen eğrilerin üçü de konkavdır.
3. Dönüm (büküm) Noktası
f, sürekli olmak üzere, fonksiyonun konvekslikten konkavlığa ya da konkavlıktan konveksliğe geçtiği noktaya dönüm (büküm) noktası denir.
Diğer bir ifadeyle, f nin grafiği olan eğrinin, eğrilik yönünün değiştiği noktaya, dönüm (büküm) noktası denir.
Uyarı
| x = x0 noktasının dönüm noktası olması, x = x0 da ikinci türevin olmasını garanti etmez. Yani, dönüm noktasında türev tanımlı olmayabilir. x = x0 ın ikinci türevin kökü olması, x = x0 ın dönüm noktası olmasını garanti etmez. Dönüm noktasında ikinci türevin işaret değiştirmesi gerekir.x = x0 dönüm noktası ve bu noktada ikinci türev tanımlı ise, ikinci türev sıfırdır. |
| Bu aralıkta f ‘(x) < 0 dır.2. b < x < d için fonksiyon artandır. Bu aralıkta f ‘(x) > 0 dır.3. a < x < c için f ”(x) > 0 dır.4. x = b de f(x) in yerel minimumu, x = d de f(x) in yerel maksimumu vardır. Bu nedenle, f ‘(b) = 0 ve f ‘(d) = 0 dır.5. x = c de f(x) in dönüm noktası vardır. Bu nedenle, f ”(c) = 0 dır. |
